Enumeration of convex polyominoes using the ECO method

نویسندگان

  • Alberto Del Lungo
  • Enrica Duchi
  • Andrea Frosini
  • Simone Rinaldi
چکیده

ECO is a method for the enumeration of classes of combinatorial objects based on recursive constructions of such classes. In the first part of this paper we present a construction for the class of convex polyominoes based on the ECO method. Then we translate this construction into a succession rule. The final goal of the paper is to determine the generating function of convex polyominoes according to the semi-perimeter, and it is achieved by applying an idea introduced in [11].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generation and Enumeration of some Classes of Convex Polyominoes

ECO is a method for the recursive generation, and thereby also the enumeration of classes of combinatorial objects. It has already found successful application in recent literature both to the exhaustive generation and to the uniform random generation of various objects classified according to several parameters of interest, as well as to their enumeration. In this paper we extend this approach...

متن کامل

Enumeration of Symmetry Classes of Convex Polyominoes in the Square Lattice

This paper concerns the enumeration of rotation-type and congruence-type convex polyominoes on the square lattice. These can be defined as orbits of the groups C4, of rotations, and D4, of symmetries, of the square, acting on (translation-type) polyominoes. In virtue of Burnside’s Lemma, it is sufficient to enumerate the various symmetry classes (fixed points) of polyominoes defined by the elem...

متن کامل

On the enumeration of column-convex permutominoes

We study the enumeration of column-convex permutominoes, i.e. column-convex polyominoes defined by a pair of permutations. We provide a direct recursive construction for the column-convex permutominoes of a given size, based on the application of the ECO method and generating trees, which leads to a functional equation. Then we obtain some upper and lower bounds for the number of column-convex ...

متن کامل

0 M ar 2 00 4 Enumeration of Symmetry Classes of Convex Polyominoes on the Honeycomb Lattice ∗

Hexagonal polyominoes are polyominoes on the honeycomb lattice. We enumerate the symmetry classes of convex hexagonal polyominoes. Here convexity is to be understood as convexity along the three main column directions. We deduce the generating series of free (i.e. up to reflection and rotation) and of asymmetric convex hexagonal polyominoes, according to area and half-perimeter. We give explici...

متن کامل

A Closed Formula for the Number of Convex Permutominoes

In this paper we determine a closed formula for the number of convex permutominoes of size n. We reach this goal by providing a recursive generation of all convex permutominoes of size n+1 from the objects of size n, according to the ECO method, and then translating this construction into a system of functional equations satisfied by the generating function of convex permutominoes. As a consequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003